報(bào)告時(shí)間:2022年11月11日(星期五)14:30-15:30
騰訊會(huì)議號(hào):129 631 310
報(bào)告題目: On the Cauchy problem of a two component b-family equations in
.
報(bào)告人: 吳興龍 教授(武漢理工大學(xué))
報(bào)告摘要: In this talk, we study the well-posedness, blow-up scenario , global solution and traveling wave solution of a two-component b-family equations in space
,
, which is open problem for p≠2. First, we establish the local well-posedness for the equations by kato's semigroup theory, where we introduce the definition of dissipative operator to prove
for p≠2. Second, we improve the blow-up scenario of the strong solution for the equations derived by Liu and Yin. Third, by the conservation law and fluid equation, the global solution of this equations is derived. Finally, we prove the equations has a family of traveling wave solutions. This talk is based on a joint work with Lijun Du, who graduated from Hubei University of Arts and Science in 2019.
報(bào)告人簡介:吳興龍教授,2012年7月博士畢業(yè)于中山大學(xué)數(shù)學(xué)學(xué)院,隨后在北京物理與計(jì)算數(shù)學(xué)研究所師從郭柏靈院士從事博士后工作,2014年博士后出站后在中國科學(xué)院武漢物理與數(shù)學(xué)研究所從事研究工作,2019年調(diào)入武漢理工大學(xué)理學(xué)院并晉升為教授,博士生導(dǎo)師。研究方向:1.非線性色散波方程(Camassa-Holm方程DP方程,非線性Schrodinger方程) ;2.雙曲守恒律; 3.流體力學(xué)(可壓與不可壓Navier-Stokes方程以及Euler方程); 4. 等離子方程(Zakharov方程,雙流體方程)。自2010年以來在 J. Funct. Anal.,Indiana Univ. Math. J., Annali Sc. Norm. Sup. Pisa, Nonlinearity,JHDE, JMFM, Nonlinear Anal., Differ. and Integral equations, DCDS-A等國際SCI期刊上發(fā)表30多篇學(xué)術(shù)論文。學(xué)術(shù)論文已被國際期刊引用的總次數(shù)超過350余次(其中論文單篇最高被引次數(shù)為130余次)。應(yīng)邀為J. Funct. Anal.,SIAM J. Math. Anal.,JDE,以及Phys. Lett. A等10多個(gè)國際期刊的審稿人。目前已主持了國家自然科學(xué)基金項(xiàng)目4項(xiàng),并參與國家自然科學(xué)基金項(xiàng)目6項(xiàng)。